An improved collaborative representation based classification with regularized least square (CRC-RLS) method for robust face recognition
نویسندگان
چکیده
Fast and robust face recognition is a challenging research topic in the field of computer vision. A recently proposed Collaborative Representation based Classification with Regularized Least Square (CRC–RLS) algorithm shows very lower computational cost but with poor robustness. In order to solve this problem, we propose an improved CRC–RLS method. Firstly, the image Gabor features were extracted and used to construct initial dictionary. Secondly, we learn a discriminative dictionary by a label consistent K-SVD (LC-KSVD) method which combines the sparse coding error with the reconstruction error and the classification error. Finally, l2-norm of coding residual in CRC–RLS is computed and the classification problem is transformed into solving linear programing problem. Experiments on two benchmark face databases with variations of illumination, expression, occlusion show that the proposed method can achieve high classification accuracy and has a very low time-consuming. & 2016 Elsevier B.V. All rights reserved.
منابع مشابه
Adaptive and Weighted Collaborative Representations for image classification
Recently, (Zhang et al., 2011) proposed a classifier based on collaborative representations (CR) with regularized least squares (CRC-RLS) for image face recognition. CRC-RLS can replace sparse representation (SR) based classification (SRC) as a simple and fast alternative. With SR resulting from an l1-regularized least squares decomposition, CR starts from an l2-regularized least squares formul...
متن کاملImage classification using kernel collaborative representation with regularized least square
Sparse representation based classification (SRC) has received much attention in computer vision and pattern recognition. SRC codes a testing sample by sparse linear combination of all the training samples and classifies the testing sample into the class with the minimum representation error. Recently, Zhang analyzes the working mechanism of SRC and points out that it is the collaborative repres...
متن کاملMulti-scale Patch Based Collaborative Representation for Face Recognition with Margin Distribution Optimization
Small sample size is one of the most challenging problems in face recognition due to the difficulty of sample collection in many real-world applications. By representing the query sample as a linear combination of training samples from all classes, the so-called collaborative representation based classification (CRC) shows very effective face recognition performance with low computational cost....
متن کاملStatistical binary pattern and post-competitive representation for pattern recognition
During the last decade, sparse representations have been successfully applied to design highperforming classification algorithms such as the classical sparse representation based classification (SRC) algorithm. More recently, collaborative representation based classification (CRC) has emerged as a very powerful approach, especially for face recognition. CRC takes advantage of sparse representat...
متن کاملCollaborative Representation based Classification for Face Recognition
By coding a query sample as a sparse linear combination of all training samples and then classifying it by evaluating which class leads to the minimal coding residual, sparse representation based classification (SRC) leads to interesting results for robust face recognition. It is widely believed that the l1norm sparsity constraint on coding coefficients plays a key role in the success of SRC, w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neurocomputing
دوره 215 شماره
صفحات -
تاریخ انتشار 2016